当前位置:首页>手机app下载>正文

【贴吧】理想汽车智驾提速 全量推送无图NOA

来源:Bevictor伟德官网 - 韦德(中国)体育-伟大始于1946  更新时间:2024-11-05 18:28:34

7月5日,理想理想汽车在2024智能驾驶夏季发布会宣布将于7月内向全量理想AD Max用户推送“全国都能开”的汽车全量无图NOA,并将于7月内推送全自动AES(自动紧急转向)和全方位低速AEB(自动紧急制动)。智驾同时,提速推送理想汽车发布了基于端到端模型、无图VLM视觉语言模型和世界模型的理想贴吧全新自动驾驶技术架构,并开启新架构的汽车全量早鸟计划。

智能驾驶产品方面,智驾无图NOA不再依赖高精地图或先验信息,提速推送在全国范围内的无图导航覆盖区域均可使用,并借助时空联合规划能力带来更丝滑的理想绕行体验。无图NOA也具备超远视距导航选路能力,汽车全量在复杂路口依然可以顺畅通行。智驾同时,提速推送无图NOA充分考虑用户心理安全边界,无图b站用分米级微操带来默契安心的智驾体验。此外,即将推送的AES功能可以实现不依赖人辅助扭力的全自动触发,规避更多高危事故风险。全方位低速AEB则再次拓展主动安全风险场景,有效减少低速挪车场景的高频剐蹭事故发生。

自动驾驶技术方面,新架构由端到端模型、VLM视觉语言模型和世界模型共同构成。端到端模型用于处理常规的驾驶行为,从传感器输入到行驶轨迹输出只经过一个模型,信息传递、推理计算和模型迭代更高效,驾驶行为更拟人。文心一言VLM视觉语言模型具备强大的逻辑思考能力,可以理解复杂路况、导航地图和交通规则,应对高难度的未知场景。同时,自动驾驶系统将在基于世界模型构建的虚拟环境中进行能力学习和测试。世界模型结合重建和生成两种路径,构建的测试场景既符合真实规律,也兼具优秀的泛化能力。

无图NOA四项能力提升,全国道路高效通行

将于7月内推送的无图NOA带来四项重大能力升级,全面提升用户体验。首先,得益于感知、理解和道路结构构建能力的全面提升,无图NOA摆脱了对先验信息的依赖。用户在全国范围内有导航覆盖的城市范围内均可使用NOA,甚至可以在更特殊的胡同窄路和乡村小路开启功能。

其次,基于高效的时空联合规划能力,车辆对道路障碍物的避让和绕行更加丝滑。时空联合规划实现了横纵向空间的同步规划,并通过持续预测自车与他车的空间交互关系,规划未来时间窗口内的所有可行驶轨迹。基于优质样本的学习,车辆可以快速筛选最优轨迹,果断而安全地执行绕行动作。

在复杂的城市路口,无图NOA的选路能力也得到显著提升。无图NOA采用BEV视觉模型融合导航匹配算法,实时感知变化的路沿、路面箭头标识和路口特征,并将车道结构和导航特征充分融合,有效解决了复杂路口难以结构化的问题,具备超远视距导航选路能力,路口通行更稳定。

同时,无图NOA重点考虑用户心理安全边界,用分米级的微操能力带来更加默契、安心的行车体验。通过激光雷达与视觉前融合的占用网络,车辆可以识别更大范围内的不规则障碍物,感知精度也更高,从而对其他交通参与者的行为实现更早、更准确的预判。得益于此,车辆能够与其他交通参与者保持合理距离,加减速时机也更加得当,有效提升用户行车时的安全感。

主动安全能力进阶,覆盖场景再拓展

在主动安全领域,理想汽车建立了完备的安全风险场景库,并根据出现频次和危险程度分类,持续提升风险场景覆盖度,即将在7月内为用户推送全自动AES和全方位低速AEB功能。

为了应对AEB也无法规避事故的物理极限场景,理想汽车推出了全自动触发的AES自动紧急转向功能。在车辆行驶速度较快时,留给主动安全系统的反应时间极短,部分情况下即使触发AEB,车辆全力制动仍无法及时刹停。此时,AES功能将被及时触发,无需人为参与转向操作,自动紧急转向,避让前方目标,有效避免极端场景下的事故发生。

全方位低速AEB则针对泊车和低速行车场景,提供了360度的主动安全防护。在复杂的地库停车环境中,车辆周围的立柱、行人和其他车辆等障碍物都增加了剐蹭风险。全方位低速AEB能够有效识别前向、后向和侧向的碰撞风险,及时紧急制动,为用户的日常用车带来更安心的体验。

自动驾驶技术突破创新,双系统更智能

理想汽车的自动驾驶全新技术架构受诺贝尔奖得主丹尼尔·卡尼曼的快慢系统理论启发,在自动驾驶领域模拟人类的思考和决策过程,形成更智能、更拟人的驾驶解决方案。

快系统,即系统1,善于处理简单任务,是人类基于经验和习惯形成的直觉,足以应对驾驶车辆时95%的常规场景。慢系统,即系统2,是人类通过更深入的理解与学习,形成的逻辑推理、复杂分析和计算能力,在驾驶车辆时用于解决复杂甚至未知的交通场景,占日常驾驶的约5%。系统1和系统2相互配合,分别确保大部分场景下的高效率和少数场景下的高上限,成为人类认知、理解世界并做出决策的基础。

理想汽车基于快慢系统系统理论形成了自动驾驶算法架构的原型。系统1由端到端模型实现,具备高效、快速响应的能力。端到端模型接收传感器输入,并直接输出行驶轨迹用于控制车辆。系统2由VLM视觉语言模型实现,其接收传感器输入后,经过逻辑思考,输出决策信息给到系统1。双系统构成的自动驾驶能力还将在云端利用世界模型进行训练和验证。


推荐新闻
最新资讯
返回顶部